| |
 | |
 |
 | | |------|------|------|------|------|------|
 |
 |
 |
 |
 |
 | |
 |
 |
 |
 |
 | |------|------|------|------|------| Calculating IV Solution Concentration | |--| | <u>Example 1</u> You have an IV preparation of 500 milligrams of lidocaine HCL (Xylocaine) in 5% D/W. The final solution has a volume of 250 ml. You realize that the IV solution contains mg of lidocaine HCL per ml. | | To find the mg/ml: | | Step 1 – Write down the amount of drug added as the numerator Step 2 – Write down the volume of the solution in the denominator Step 3 – Perform the math | | Step 3 Step 1 500 mg = 2 mg Step 2 250 ml ml | | 4 | | |
 | | |------|------|--| |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 |
 | | |------|------|------|--|
 |
 |
 | |